
Journal of Statistical Physics, Vol. 53, Nos. 3/4, 1988 

Generalized Lyapunov Exponents in 
High-Dimensional Chaotic Dynamics and 
Products of Large Random Matrices 

Andrea Crisanti, 1 Giovanni Paladin, 2, 3 and Angelo Vulpianil' 3,4, 5 

Received February 19, 1988; revision received May 24, 1988 

We study the behavior of the generalized Lyapunov exponents for chaotic 
symplectic dynamical systems and products of random matrices in the limit of 
large dimensions D. For products of random matrices without any particular 
structure the generalized Lyapunov exponents become equal in this limit and 
the value of one of the generalized Lyapunov exponents is obtained by simple 
arguments. On the contrary, for random symplectic matrices with peculiar 
structures and for chaotic symplectic maps the generalized Lyapunov exponents 
remains different for D ~ o% indicating that high dimensionality cannot always 
destroy intermittency. 
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1. I N T R O D U C T I O N  

Ergodic i ty  is one of the mos t  re levant  proper t ies  for a s tat is t ical  descr ip t ion  
of dynamica l  systems. One  can see by numer ica l  exper iments ,  (1) and  
somet imes  by  analy t ica l  computa t ions ,  (2) tha t  chaot ic i ty  (in the sense that  
nea rby  t ra jector ies  diverge exponent ia l ly  in t ime)  is a feature c o m m o n  to a 
wide class of e rgodic  systems. 

The  degree of chaot ic i ty  is usual ly  measured  by  the typical  exponent ia l  
g rowth  of the uncer ta in ty  in the init ial  state of the system, i.e., by the 
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maximal Lyapunov exponent 2. However, )~ does not give a full description 
of the chaotic flow, since it is an asymptotic quantity. In general, one in 
fact observes variations of the degree of chaoticity on finite times. We call 
this phenomenon temporal intermittency; see Section 2 for technical details. 
The most impressive examples are given by one-dimensional maps with 
"quasitangent" contact and by the Lorentz system for certain values of the 
control parameters (3) where one has a regular motion for long times 
interrupted by randomly distributed bursts of strong chaoticity. 

One can give a quantitative description of intermittency by intro- 
ducing a set of generalized Lyapunov exponents L(q) which describes the 
average growth of the moments of the response of the system to a 
perturbation. (4) This method gives a good description of the fluctuations of 
the chaoticity since it takes into account the finite-time properties of the 
flow. In the limit of nonintermittent systems it is easy to see that L(q) = 2q, 
but in general this is not true and the deviation of L(q) from the linear 
behavior gives an indication of the intermittency degree of the flow. 

Numerical computations show that intermittency occurs in generic 
systems with few degrees of freedom. (4) Therefore, it is natural to ask if 
intermittency disappears in the limit of infinitely many degrees of freedom 
(thermodynamic limit). This question is relevant in turbulence (5) and in 
explosion problems, (6) where stochastic linear differential equations with 
multiplicative noise are involved (see Appendix A). 

In order to investigate this point, we have studied products of random 
matrices and symplectic maps in the limit of large dimension D. Let us 
briefly state our results: 

1. For products of random matrices without particular structure 
(e.g., with independent, identically distributed elements) the intermittency 
disappears for D ~ o0, i.e., LD(q) = 2(D)q + O(1/D~), where q depends on 
the details of the probability distribution of the elements. Moreover, we 
find that 2(D)= 2(oo)+ O(1/D"), where 2(o0) can be obtained by a simple 
argument. 

2. In the case of products of particular symplectic random matrices 
with high connectance (i.e., with a number of random elements ocD 2) we 
obtain results similar to those of the previous point, but now the 
asymptotic value 2(o0) cannot be obtained by trivial arguments. 

3. For the same type of symplectic random matrices but with low 
connectance as well as for symplectic maps we find that intermittency does 
not disappear in the D--* o0 limit, i.e., L~(q)r  2(o0)q. 

In Section 2 we briefly introduce the generalized Lyapunov exponents 
and discuss their meaning. We present the results for the products of 
random matrices without particular structure in Section 3 and for sympletic 
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maps and products of symplectic random matrices in Section 4. Section 5 is 
devoted to the conclusions. In Appendix A we report the calculation of 
L(q) for stochastic linear differential equations with multiplicative noise 
and Appendix B the computation for products of random matrices with 
independent elements whose mean value is different from zero. 

2. GENERALIZED LYAPUNOV EXPONENTS 

Let us consider a deterministic map 

x ( n + l ) = G [ x ( n ) ] ,  x, G E R  z~, n = 0 ,  1 .... (2.1) 

The maximal Lyapunov exponent 2 is defined ~7~ considering the linear 
evolution of the tangen vector ~ e Re: 

- ~ c?Gi[x(n)] 
(i(n + 1) - ~j(n) (2.2) 

j= 1 ~Xj 

2 =  lim -lln I~(n)[ (2.3) 
n~o~n Ir 

It follows that a small uncertainty 6x(0) in the initial state of the system 
becomes, after n iterations, 

Ibx(n)[ ~ 16x(0)l e ~ (2.4) 

For a product of D x D  random matrices l - [~=lA(k)= 
A(n) A ( n - 1 ) . - . A ( 1 )  the definition of 2 is still given by Eq. (2.3), where 
n o w  

; (n) = A(n) ~(n - 1) (2.5) 

The meaning of 2 in this case depends on the particular problem connected 
to (2.5). For example, 2 is the inverse of the characteristic localization 
length in a one-dimensional discrete Schr6dinger equation with random 
potential (s) and is proportional to the free energy in one-dimensional dis- 
ordered systems. (9) The exponent 2, however, does not describe the degree 
of intermittency, because of its global character. 

It is useful to define the response Rm(n ) t o  a perturbation in x(m) after 
a time n by 

I;(m+n)l 
Rm(n) - [r 
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so that 2 is given by 

)~ = lim 1 ( ln R(n)} (2.6) 
n ~  oo F/ 

where ( . . . }  indicates a time average, i.e., 

m 

: ~ f ( x ( k ) )  ( f ( x ) }  ,~lim mk= l  

The usual definition of 2 does not require an average, since 
2=limn~oo(1/n)lnRm(n) for almost all initial conditions m. As con- 
sequence of the Oseledec theorem, ~1~ the two definitions in fact are 
equivalent. 

The generalized Lyapunov exponents are then defined as (4) 

L(q) = lira -1 ln(Rq(n)} (2.7) 
n ~ o o  n 

One can easily recognize that 

2 = dL(q) (2.8) 
dq q=O 

A linear behavior L(q) = 2q indicates absence of intermittency; in general, 
however, L(q) is a convex funtion of q.m) 

We want briefly to stress that basically L(q) gives an indication of the 
large fluctuations of R(n) at finite n~ 12) Let us define a local exponent 
parameter (LEP) 7 as 

Rm(n ) "~ e ~(m)n, n >> 1 (2.9) 

and classify the trajectories of length n (i.e., {x(m), x(m + 1),..., x(m + n)}) 
according their LEP. 

In order to obtain an exponential growth of (Rq(n)},  we have to 
assume that the probability of having a response, after n steps, with a given 
LEP has the form 

dPn(7) = d#(7)e -s(~)n, S(y) >~ 0 (2.10) 

where #(~) is a smooth function of ~. We can now calculate (Rq(n))  
averaging over the ~ distribution, i.e., 

(Rq(n))  = f dp(7) e [q~ s(~)]~ ~ e,,L(o) (2.11 ) 
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For  large n the integral can be calculated by the saddle point method, and 
we find 

L(q) = max[q7 - S(7)] (2.12) 

The Legendre transform (2.12) shows that each value of q selects a 
particular 7 given by 

dS(~) 

q = --~7 ,7 

We note that the function S has its minimum value ( S = 0 )  at ~ = 2 as 
consequence of the Oseledec theorem. (1~ It is also possible to see that this 
description in terms of 7 and S(7) is related to a multiffactal structure in a 
suitable space. We are not interested here in this aspect of the problem; for 
a review see ref. 13. 

The probability distribution of R(n) for n >> 1 is usually close to a 
log-normal distribution: 

1 I [ l n R ( n ) - 2 n ] 2 ]  (2.13) 
P[R(n)]  ~- R(n)(27c#n)1/2 exp . -  2#n J 

where 

1 
# = lim - ( [in R(n) - 2n] 2) 

n ~ o o  n 

Note indeed that writing n =hA (with ~ and A large), one has Rm(n)= 
I-[~= 1 R(k) with _~(k)= Rm+ (k-1)~. Therefore, since In R(k) are practically 
uncorrelated variables, we can use the central limit theorem for In Rm(n) 
and, after a change of variables, we obtain Eq. (2.13). Under the hypothesis 
that R(n) is exactly a log-normal variable, one has 

L(q) = 2q + �89 (2.14) 

In general, Eq. (2.14) is true only for small q, even if the log-normal is a 
good approximation. This trouble is due to the fact that the moments of 
the log-normal distribution grow very fast with q.(14) 

At the first rough level we have two relevant parameters for the 
characterization of intermittency: 2 and #. One can show that the value 
# /2- -1  delimits the borderline between weak and strong intermittency. 
Since P[R(n)]  reaches its maximum for 

R*(n) = e ~"CI ~/~') 
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one sees that in the case/*/2 > 1 intermittency gives drastic corrections to 
the "mean field" result obtained taking into account only the maximum of 
the probability distribution. In fact, for n~oo,  R*(n)~O, while 
(ln R(n) ) ~ oo. 

3. P R O D U C T S  OF R A N D O M  M A T R I C E S  W I T H O U T  
S T R U C T U R E S  

In this section we consider products I~" A(k) of D x D independent k=l  
random matrices A(k) with no particular structure. We mean that the 
matrix A(k) is independent of the matrix A(h) if k eh, and that each 
element A(k),j is independent of A(k)r, if (i, j )  r (r, s). We here take into 
account the symmetry as the only possible "structure" [i.e., A(k)0. = A(k)ji]. 

We consider two cases: (1) A(k)u=0,  (2) A(k)i j>0,  where the (...) 
indicates the average over the probability distribution of the matrix 
elements. In the first case we have chosen the normalization 

A(k),j - x(k)~ (3.1) 

and in the second case 

A(k)iJ-- Dq'35 x(k)~ (3.2) 

where x(k)~ are identically distributed independent random variables with 
zero mean and variance ~2=x(k)2  and 35>0 is a fixed number. The 
scalings (3.1) and (3.2) are the natural ones in order to have L(q),,~ O(1) in 
the thermodynamic limit D --* oo. 

For products of random matrices the exponents L(q) can be defined 
as (15) 

L(q) =nlimoo l l n  ( Tr f i  A ( k ) q /  (3.3) 
/7 \1 k=l  

which is equivalent to (2.7). Using the independence of A(k)0. in (3.3), one 
sees that in the case (3.1) 

L(2) = In a 2 (3.4a) 

while in the case (3.2) 

L ( 1 ) = l n  ~ (3.4b) 

at least for large D. 
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As far as we know, there is only one analytical result for matrices of 
the form (3.1) with x(k)u standard symmetric stable random variables of 
exponent c(. (16) In the case e =  2 (i.e,, Gaussian variables) one has 

and therefore 

No~e that 2(D)~L(2)/2 and # ( D ) ~ 0  as D-- ,  o e; in the limit of large 
dimensions the intermittency therefore disappears and L(2) is obtained by 
a trivial argument. The behavior 2 ( o e ) - 2 ( D )  oc 1/D is shown in Fig. 1 as 

. _  "o . . . . . . . . . .  L(2)/2 

' "  L(1) -.05 a) -.~ 

- .1  *-- .  ). 

I I I I p. 

- . 6  

~ o 

o L(1) 

b) ~ ----  

[ I I [ ~, 

1/40 1/20 1/10 1/D t/5 

Fig. 1. 2, L(1),  and L(2) /2  vs. 1/D for matrices of the form (3.1): (a) ~ = 1 ,  x(k)u are 
Gaussian variables, and x(k)o.=x(k)ji; the dashed line indicates Eq.(3 .5) .  (b) x(k)u are 
random variables uniformly distributed in the interval [ - 1 ,  1]; the horizontal line indicates 
Eq. (3.4a). 
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.0; 

0 

-.02 

-.04 

~ L  (2)/2 
~ L(1) o 

i i I I I I 

a) 

.02 

-.02 

L (2)/2 

. . . .  L(1) 

I I I I I 

b) 
I p 

.0~ 

0 

-.04 

- - ,08  

L ( 2 ) / 2  

~-L(1) 

t I .~ I I I 
.02 .04 .06 1/D2 

Fig. 2. 2, L(1),  and L(2) /2  vs.  1/D 2 for matrices of the form (3.2). The horizontal line 
indicates Eq. (3.4b) and the dashed line indicates Eq. (3.8). ( a ) ) 3 =  1, a =  1; x(k)q are 
Gaussian variables, and the matrix A(k)  is symmetric; (b) As in. (a), but the matrix A(k)  is 
not symmetric; (c) x(k)v are random variables uniformly distributed in the interval [ - 1 ,  1 ]. 
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observed in numerical calculations of products of matrices with the form 
(3.1), independent of the details of the probability distribution of the x(k)a 
even in the case of symmetric matrices. 

Let us now consider matrices of the form (3.2). In this case we are able 
to prove, by means of a perturbative calculation and neglecting terms of 
o[(a/D) 2] (see Appendix B), that 

LD(2)=21n  f + c ( ~ )  2 (3.7) 

and since Eq. (2.14) for q = 2  is valid when D is large enough (as 
numerically checked), one gets 

)~(D) = In )7 2 \Df] (3.8) 

where c = 2 if we impose the A(k) to be symmetric, and c = 1 if we do not. 
Figure 2 shows a comparison between the numerical results and Eq. (3.8). 
Also in this case intermittency disappears in the large-D limit and 
~(~)=L(1) .  

We stress that, in order to have L ( 2 ) <  0% in our calculations we 
always consider distributions of A(k)0 with finite variance. In ref. 16 this 
condition is satisfied only for ~=2 .  The situations with a z =  oe [i.e., 
L(2) = ov] should give a rather different scenario for L(q). We expect, in 
fact, a finite value of L(q) only for q <  qc< 2, as found in a particular 
c a s e .  (17) 

4. SYMPLECTIC M A P S  AND PRODUCTS OF R A N D O M  
SYMPLECTIC MATRICES WITH STRUCTURES 

Let us consider symplectic maps of the form 

q ( k +  l)  = q(k) + p(k), mod(2u) 

p(k + 1) = p(k) - eVF[q(k + 1)3 
(4.1) 

where q, p e R z~ and V = (O/~ql,..., O/c3qD). We point out that a symplectic 
map is a canonical transformation from the variables (q(k), p(k)) to 
(q(k + 1), p(k + 1)). Moreover, such a map can be interpreted as the recur- 
sive rule related to a Poincar6 section of a Hamiltonian system with D + 1 
degrees of freedom. Note that for e = 0 the map (4.1) represents a system of 
D uncoupled ocillators (p being the actions and q the angles). For  e-r 0, ~F 
plays the role of the nonintegrable part in the Hamiltonian flux. 
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We consider as first case nearest neighbor interactions and periodic 
boundary conditions, i.e., 

D 

F= ~ f[q~+l-q~] 
i = 1  

and 

qi(k + 1) = q~(k) + p~(k), mod(2rc) 

p,(k + 1)=p~(k)+e{gEq~+t(k + l ) -q i ( k  + 1)] 

- g [ q s ( k + l ) - q ~  l ( k+  1)]} 

with q l = q D + l ,  pl=PD+~, and g(x)=df(x)/dx. In our simulations we 
have chosen g of the form 

g(x) = sin~(x) 

where /3 is an odd integer. In Fig. 3, 2, L(1), and L(2)/2 are plotted as a 
function of lID for different values of e and/3. It is well evident that in all 
these cases #(oo)#0.  We want to note that the intermittency may be 
relevant in the sense that #/2 > 1 even when D --* oo; see Fig. 3c. 

Nevertheless, one could suspect that the persistence of intermittency 
up to the thermodynamic limit is pathologically related to our particular 
chaotic systems. A way to investigate this point consists in neglecting the 
deterministic correlations in the evolution of the tangent vectors. The com- 
putation of L(q) for the symplectic map (4.1) involves products of matrices 
of the form 

1 
B(k)=(ebl(k)  l + a b ( k ) )  (4.2) 

where 1 is the D x D identity matrix and b(k) is the D x D symmetric 
matrix defined by 

#2FEq(k)] b(k),j- #q, dqj (4.3) 

where q(k) is given by the map (4.1). In the highly chaotic regime, this 
deterministic dynamics can be approximated, in a nontrivial way, by a 
product of symplectic random matrices A(k) of the form (18) 

1 A(k)=(~al(k) l+aa(k)) (4.4) 
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where a(k) is a symmetric random matrix. Essentially the idea is that the 
randomness of A(k) mimics the chaoticity of the trajectories generated by 
the deterministic dynamics given by the map (4.1[). It is interesting to note 
that the Lyapunov exponent for products of random matrices of the form 
(4.4) shows behavior (often not only qualitatively 1~9)) very close to those 
obtained with the t rue  dynamics (4.1). Beyond the relation with deter- 
ministic chaotic systems, products of random symplectic matrices are 
interesting in themselves. For a recent review on random matrices see, e.g., 
refi 20. 

.91 
. . . . .  L(2)/2 

~ 0 - - 0 - -  - - 0  _ _  
- -  - -  O _ _  

- ~---x- . . . .  ~  1 ) 

I I I [ I p 

.48 

.44 

.40 

.36 

. . . . . .  ~ L(2)/2 

{ - - L ( 1 )  

_ b)  ~ 

I [ i I I i. 

.1 

.08 

.06 

.04 

.02 

0 ~ 0  ~ ~ 0 ~  

O ~  

" - ~ - L ( 2 ) / 2  

c)  - -~  . . . . . . . . .  
I I I I I = 

!//'48 1/~ll~ 1/10 1/13 1/5 

Fig. 3. 2, L(1), and L(2)/2vs. 1/D for symplectic maps (4.1): (a) f l = l ,  s = t ;  (b) f l=3,  
e=0.4; (c) f l=5,  ~=0.02. 
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In order to represent nearest neighbor coupling, we assume that the 
elements a(k)~ are nonzero only if l i - j l  ~< 1 or (i, j ) =  (1, D), (D, 1). In the 
case a(k)0. = 0 it has been shown, (2~ by means of a perturbative expansion, 
that 

L(2) = (2za2) 1/3 ~2/3 (4.5) 

where z is the number of nonzero elements on each line of a(k) (in the 
nearest neighbor case z = 3), and a 2 is the variance of the distribution of 
the nonzero elements of a(k). 

In Fig. 4 the behavior of 2, L(1), and L(2)/2 is shown as a function of 
1/D for different values of e in the case when the nonzero elements of a(k) 

.26 

.24 

.22 

.20 

= = = = , - - L  (2)/2 

o o o - -  

- - - ~  . . . . . . . . .  _ _L(1) 

% 

% 

I I I I I p 

Fig. 4. 

.01 c, 

.017 

.015 

0 0 0 I )  o L(2)/2 

-o- -LO) 

I I I [ I 

1/80 1/40 1~0 1/~0 1~ 1/5 

2, L(I) ,  and  L(2) /2  vs. lID for symplect ic  r a n d o m  matr ices  (4.4) with z = 3 ;  the 
hor izonta l  lines indicates Eq. (4.5). (a) e = 0.5, (b) e = 0.01. 
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are uniformly distributed in the interval E - l / 2 ,  1/2]. The behavior is 
similar to that observed in Fig. 3 for the map (4.1). In the matrices con- 
sidered in this section the number  of nonzero random elements is O(D) 
while the total number  of elements is 4D 2. Therefore, we are in a situation 
of low connectance, i.e., of finite-range interactions. 

In order to investigate the role of the connectance in the intermittency, 
we have performed numerical calculations for different values of z. In Fig. 5 
we plot 2 and L(2)/2 as function of lID for z =  D, i.e., all the elements of 
a(k) are nonzero. To keep L(2) fixed, we have rescaled e by a factor D-1/2. 
In this case of maximal connectance, we observe that 2 (D)-~  L(2)/2 and 
#(D) w_ lID for large D. This behavior remains valid for high connectance 
where z oc D and the number  of nonzero random elements of a(k) is 
O(DZ). On the contrary, for low connectance, i.e., z independent of D, one 
has the same behavior as for the case z = 3. 

Symplectic maps exhibit the same scenario which has been described 
for a product of symplectic random matrices of the form (4.4), considering 
in (4.1) F as follows: 

D t3 

F= Z Z f[qi+j-qi]  
i = i  j ~ l  

where ~ plays the role of z. 
It is worth stressing that the high-connectance situation is intermediate 

between the case of random matrices without structure, discussed in the 

Fig. 5. 

@ 

.018 ~ ~- 

,017~- 

,016 - 

�9 9 . L(2)/2 

-X-~ 

" - k  

I I I I 

1/80 1/40 1/20 1//10 1/D 

2 and L(2)/2 vs. 1/D for symplectic random matrices (4.4) with z=D and 
e = O.O1/ (D/3)a /2;  the horizontal line indicates Eq. (4.5). 
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previous section, and the case of symplectic maps and random matrices 
with low connectance. Indeed, even if we have that 2 ( D ) ~  L(2)/2 when 
D -~ o% the value of L(2) cannot be obtained by trivial arguments. 

5. C O N C L U S I O N S  

We have studied the problem of the generalized Lyapunov exponents 
in the high-dimensional limit for the following systems: (1) products of 
random matrices without structure; (2) products of random symplectic 
matrices; (3) chaotic symplectic maps. 

The main result is that in the cases of high connectance the intermit- 
tency disappears when the dimension of the system is increased, while for 
systems with low connectance (i.e., finite-neighbor interactions) the inter- 
mittency survives also when D ~ oe. As a consequence, for these systems 
the finite-time fluctuations play a relevant role in this thermodynamic limit. 
These are indeed the most generic cases. Finally, we have extended our 
results to linear stochastic differential equations with multiplicative noise. 

A P P E N D I X  A. GENERALIZED L Y A P U N O V  E X P O N E N T S  FOR 
LINEAR S T O C H A S T I C  DIFFERENTIAL 
E Q U A T I O N S  W I T H  M U L T I P L I C A T I V E  NOISE 

Let us consider the following linear stochastic differential equation 
with multiplicative noise (we adopt the Stratanovich calculus(Z2)): 

D D 

dx,= ~ Ao.xjdt+ ~ xjdW~j (A.1) 
j = l  j = l  

where W~ are Wiener processes, i.e., uncorrelated Gaussian processes with 
zero mean and 

0 .2 

( (dW 0. dWkl)) = -~ 6ikfjt dt (A.2) 

where a = O(1) and A is D x D (random quenched) matrix whose elements 
are constant in time of order O(D 1/2) of both signs and ( ( . . . ) )  denotes 
the average over the Wiener measure. Note that this normalization is quite 
natural in order to have dxi = as(x) dt + bi(x, #)  d#i with ai and bi of order 
O(1) and #i a standard Wiener process. Equation (A.1) models some 
explosion problems with random control parameters. (6) Moreover, it is 
involved in the problem of the stretching of a line in a D-dimensional 
random straining velocity field. (5~ 
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Let us in fact consider an infinitesimal line element x = (x~ ..... XD) 
moving with the field velocity v(y, t)(v, y e RD). This is strecthed according 
to 

cOvi 
dxi =j~= l ~yjXj dt (A.3) 

Thus, Eq. (A.1) is obtained assuming that avj@j  consists of two parts, one 
steady and the other given by a quickly varying term: 

~--~j dt = A o. dt + d W  U 

We show now that for the stochastic process defined by Eq. (A.1) one 
has 

L(q) = 2 q + D q 2  (A.4) 

where 

2 = max Re l i= O(1) (A.5) 
i 

{li} are the eigenvalues of the matrix A, a =  O(1), and Re indicates the real 
part. If A is a random matrix, then Eq. (A.5) follows directly from the 
generalized circular law for the average distribution of the eigenvalues of 
random matrices. (23~ 

With a suitable change of variables z = Ux, Eq. (A.1) can be written as 

D 

dz, = liz~ dt + ~, zj d~rg~j (A.6) 
j = i  

where for simplicity of notation we have assumed that the eigenvalues are 
not degenerate, and dV~/0=ZktUikdWk~Ugl. Note that since U0=  
O(D -~/2) [we remember that UAU -1 is diagonal with elements O(1)] we 
have that ~r7,). are Wiener processes, so that from the law of large number, 
for D >> 1 one has 

(( dkTil ij dk?(I kz )) = 
~ d t ,  c~j = 0(1) if ( i , j ) = ( k , l )  

~ d t ,  C~k, = 0(1) if (i, j)  # (k, l) 

822/53/3-4-4 
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Let us now write down the evolution equation for R2= ~-~D= 1 Z2: 

D 

dR 2 = 2 ~ l~z~ dt + 2 ~  z~zj d~7~ 
i = l  i,j 

Defining 

(A.7) 

D 

Z l,z~ = C~(t)R: 

i=: (A.8) 
1,D R 2 

z,zj dq% = C2(t) 
i,j - - ~  

with Cl(t) and Ca(t) bounded random variables, Cl~<max~Rel,, 
C2 ~< const = O(1), and # a standard Wiener process, Eq. (A.7) becomes 

1 
dR 2 = 2C:( t )R  2 dt + - ~  C2(t)R 2 d# (A.9) 

Invoking ergodicity, one can compute the mximal Lyapunov exponent by 
an average over the Wiener measure: 

2 = lim 1 , ~  ~ ((In R2)) = ((Ct))  ~<max~ Re li (A.10) 

Denoting by the index for which Re li assumes its mximum value, we have 

lim -1 ((ln R2)) >~ lim _1 ((ln z2)) = 2 2 (A.11) 

(A.10) and (A.11), Eq. (A.5) follows. Moreover, from Comparing Eqs. 
Eq. (A.9) one has 

t (((ln R - ( ln R))2))  - const (A.12) 
D 

from which Eq. (A.4) follows. Therefore, we see that in the limit D ~ oo the 
intermitency disappears in a way similar to that observed for products of 
random matrices without structure. 

A P P E N D I X  B. C O M P U T A T I O N  OF THE GENERALIZED 
L Y A P U N O V  E X P O N E N T S  FOR P R O D U C T S  OF 
R A N D O M  M A T R I C E S  W I T H O U T  S T R U C T U R E  

We limit ourselves to the case A~ > 0. Let us write the matrices of the 
form (3.2) in the following way: 

O" A(k)=~a+ b(k) (B.1) 
D 
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Noting that aJ= 
becomes 

where ao=  1 and b(k)ij are independent random variables with zero mean 
and variance one. Since L ( 1 ) =  In 37, in order to calculate 2, it suffices to 
evaluate L(2), assuming that Eq. (2.14) holds for q = 2  (at least for 
large D). 

By definition, L(21 is given in the large-n limit by 

(~(n) 2 ) = <((0), B r(n) B(n) ;(0) ) ,-~ e ~L{z) (B.2) 

where 

B(n) = A(n)  A(n - 1 ) - - .  A(1)  (B.3) 

We will follow the method of ref. 21 for the computation of L(2) for 
products of matrices of the form (4.4). We write B(n) as follows: 

g ( n ) =  
\ D ]  \ D /  rn ~ O 

x ~ a~b( i~+~+ . - - + i a + m ) a i a . . . b ( i m + l + l ) a  i"~ 

i1+ +,~+, . . . .  (13.4) 

We need to estimate Br(n) B(n). Since ~ = 0 and since b(k) is independent 
of b(h) if k # h ,  the only contributions to the average (B.2) from each 
element of Br(n) B(n) are given by 

X E (aT)i'~+xbT(im+l + l ) - .-  
i t +  - . -  + i m +  l = n - - m  

x (aT)e~br(im+ 1 + "" + i2 + m)(ar)  ~' 

x a~bb(i,~+~ + . . .  + i2+m)a '2 . . . b ( im+~+l )a  ~",+t (B.5) 

D j -  ~a and a t =  a, we find that the ruth term of Eq. (B.5) 

\D- f /  D ~,,, ~ ab:r(i,,+~ + 1) "'" 
i1-/- " , .  + i m + t = n - - m  

x abr ( i , , ,+ t+  " .  + i 2 + m ) a  

x ab(i,,+~ + -.. + i  2+m)a. . .b ( i , , ,+~  + 1)a (B.6) 

In Eq, (B.6) we do not consider the case with ik = 0, since it gives only a 
small correction for large n. Using the independence of b(k) and the fact 
that b ( k ) 0 = 0  (bik)~)~= 1, we calculate the average of each term of 
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Eq. (B.6), and noting that each term br(i~)a -.. ab(ik) gives a contribution 
cD 2, where c = 2 if the matrix b is symmetric and c = 1 otherwise, we get 
(for large n) 

2 1 ~ c m y  2n (B.7) 
\Dj~/ i1+... +im+~=n m \D)SJ m! 

From Eqs. (B.2), (B.6), and (B.7), we obtain 

L(2) = 2 in )7+c (B.8) 

Therefore, assuming the validity of Eq. (2.14), Eq. (3.8) follows from 
Eq. (B.8) upon noting that L ( 1 ) = l n  37. 
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